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Abstract

It has long been recognized that using multiple approaches to solve problems is essential for
students to obtain understanding of mathematical concepts. In view of this, we consider an in-
teresting plane geometry problem with a straightforward formulation, known as the one-seventh
area triangle problem. We present solutions using GeoGebra constructions and manipulation, co-
ordinate geometry, Euclidean geometry and linear algebra. This allows the application of many
of the mathematical tools acquired at the secondary level and makes important and crucial con-
nections between them. The linear algebra section can be used as an introduction to the subject.
This section can also reinforce the close relationship between linear algebra and geometry which
might not receive enough emphasis at the undergraduate level. GeoGebra diagrams, construc-
tions and computer algebra are used throughout the paper. All explanations are done through
questions and answers which allows instructors to easily format the sections into inquiry-based
lessons.

Keywords: GeoGebra, one-seventh area triangle, geometry, algebra, multiple representations,
inquiry-based teaching

1 INTRODUCTION

In this paper we consider the one-seventh area triangle problem as in (Wikipedia, 2019). In this prob-
lem, as in Figure 1 below, we construct an inner triangle 4EDF by connecting each vertex of the
triangle4BAC with a trisection point on the opposite side. The ratio of the area of the inner triangle
to the area of the outer triangle is then always one-seventh. The one-seventh area triangle problem is a
simple, yet rich, plane geometry problem which has many generalizations and admits many methods
of proof (Clarke, 2007; Cook & Wood, 2004; de Villiers, 2005a,b; Man, 2009). We present, solve
and explore the problem through GeoGebra constructions in a manner that is accessible to secondary
and tertiary school students in a question and answer format. All GeoGebra constructions used in this
paper are available at https://www.geogebra.org/m/xwvn4fss.

The primary audience for the paper is mathematicians and instructors of undergraduate mathemat-
ics. The approaches taken in the paper are perfect for secondary education majors who are taking an
upper-level geometry course. For instructors, this paper provides a way to make important connec-
tions between the basic mathematical approaches of Euclidean geometry, coordinate geometry and
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linear algebra through the simple yet engaging one-seventh area inner triangle problem. The GeoGe-
bra constructions, and the use of CAS, are completed – as the paper is intended for instructors. Two
worksheets in Appendix A are included to demonstrate how the material can be adapted for use in a
classroom. Further, any of the GeoGebra constructions can readily be modified to support inquiry-
based lessons as demonstrated at the end of Exploration 1 in Section 2.1. Along these lines, at the
end of Exploration 2 in Section 2.2, we provide student tasks in a GeoGebra worksheet which shows
how this question may be presented to students.

The multiple approaches presented in this paper for the one-seventh area triangle problem support rec-
ommendations found in the 2015 CUPM Curriculum Guide to Majors in the Mathematical Sciences
(Zorn et al., 2015):

• Major programs should include activities designed to promote students’ progress in learning
to: use and compare analytical, visual and numerical perspectives in exploring mathematics
(Cognitive Recommendation 1: Students should develop effective thinking and communication
skills, p. 9)

• Mathematical sciences major programs should teach students to use technology effectively,
both as a tool for solving problems and as an aid to exploring mathematical ideas (Cognitive
Recommendation 3: Students should learn to use technological tools, p. 10).

• Students majoring in the mathematical sciences should learn to read, understand, analyze and
produce proofs at increasing depth as they progress through a major (Content Recommendation
2, p. 10).

Figure 1. Construction of Inner Triangle

This paper is organized as follows. In Section 2, we present a series of explorations as GeoGebra
constructions to familiarize the reader with the geometry of the problem and to present “drag tests”
and “picture proofs” as suggested by de Villiers (1999) and Lehrer & Chazan (2012).

In Section 3, we present a proof of the problem in the case of an equilateral triangle using coordi-
nate geometry. A parameter is introduced by taking “n-sections” of the sides in the inner triangle
construction. This results in the derivation of an interesting formula for the ratio of the area of the
inner to the outer triangle in terms of this parameter. The discussion and solution in this section come
directly from Warkentin (1992) with additional explanations, an interactive GeoGebra construction,
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and computer algebra. In Section 4, a proof of the one-seventh inner triangle problem, developed by
the authors, is given using Euclidean geometry. In Section 5.1, we develop a proof using the tools
of linear algebra. The proof can be done directly on the construction using vector algebra (Cook &
Wood, 2004), but we first solve the problem on a right triangle and then consider a linear transforma-
tion. This involves a simpler, initial vector computation in the right triangle and then introduces and
brings to bear crucial properties of linear transformations. Lastly, we give some final remarks.

2 USING GEOGEBRA TO EXPLORE THE ONE-SEVENTH TRIANGLE

In this section we will use GeoGebra constructions to explore the ratio of the area of a constructed
inner triangle to the area of the outer triangle. We will investigate the problem through a “drag test”,
where we can observe the ratio for many types of triangles, by considering component parts of the
construction and through division and rotation of the construction in GeoGebra. We provide a similar
construction in a parallelogram in Appendix B.

2.1 Exploration 1: Inner Triangle Construction

As in Figure 1, construct an inner triangle4EDF by connecting each vertex of the triangle4BAC
with a trisection point on the opposite side. Each trisection point is one-third of the way along the
line segment opposite the vertex in the clockwise direction, so that

BA′ = (1/3)BA, AC ′ = (1/3)AC and CB′ = (1/3)CB. (1)

To find trisection points, use the dilate tool from the transform menu.

Question 2.1 Measure area(4EDF ) and area(4BAC). Then compute the ratio

area(4EDF )

area(4BAC)
.

Drag the vertices of the triangle and observe the ratios of the areas of the triangles. Based on this
“drag test” what can you say about this construction? Does the “drag test” prove your conjecture?

See https://www.geogebra.org/m/kmkdbfkp for the construction. Based on the drag test,
and inspecting the area measures, the ratio of the area of the inner triangle (formed by segments from
each vertex to an opposite trisection point) to the area of the outer triangle is always 1 to 7. The “drag
test” strongly suggests this conjecture, but does not prove it as it is impossible to check all cases this
way. Using different methods, we give proofs of this ratio in Sections 3, 4, and 5.

In this construction, we use the FractionText command to represent the ratio as a fraction rather
than a rounded decimal. To modify the construction for an inquiry-based approach, the instructor can
open the file in the GeoGebra application, delete the four text boxes and ask students to use the input
bar, the spreadsheet, or a calculator to make the measurement for themselves. Note that the default
setting will show 0.1 for the ratio. In order to see the repeating pattern for 1/7, the student would need
to change the global setting to 10 decimal places.
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Figure 2. Other Components of Triangle

2.2 Exploration 2: Other Components of Inner Triangle Construction

In this exploration we investigate other components of triangle 4BAC in the construction in Ex-
ploration 1. Continuing with the construction from Exploration 1 and as in Figure 2, consider the
interiors of the three quadrilaterals V, VI, and VII, each of which share a side with the inner triangle.
Measure the area of each quadrilateral. Calculate the ratio of the area of each of the quadrilaterals to
the area of the outer triangle. Do the same for the three triangles on the corners, II, III and IV, each of
which share a vertex with the inner triangle.

Question 2.2

(a). What can you say about the area of the inner quadrilaterals compared to the area of the outer
triangle4BAC?

(b). What can you say about the area of the corner triangles compared to the area of the outer
triangle4BAC?

(c). Do your answers to a. and b. agree with your answer to Question 2.1?

See https://www.geogebra.org/m/vnffpxtv for a student activity and https://www.
geogebra.org/m/mnruvmq8 for the completed construction. Based on the drag test, and in-
specting the area measures, the areas of the quadrilaterals are all the same. The ratio of the area of
any of the quadrilaterals to the area of the outer triangle is 5 to 21. The areas of all the triangles on the
corners are the same as well, and the ratio of the area of any of the corner triangles to the area of the
outer triangle is 1 to 21. A proof of these ratios is given in the answer to Question 4.5 in Section 4.
Also, we have

area(I)
area(4BAC)

=
area(4BAC)− 3 area(II)− 3 area(IV )

area(4BAC)
= 1− 3

(
5

21

)
− 3

(
1

21

)
=

1

7

which should agree with your conjecture in the answer to Question 2.1.

2.3 Exploration 3: Picture Proof of Ratio of Areas

In this exploration, we provide a “picture proof” through a GeoGebra construction of the answer to
Question 2.1. This picture proof, as given by Johnston (1992), will consist of rotating and dividing
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pieces of the outer triangle to show that it does, in fact, consist of seven triangles of equal areas
to the inner triangle. Continuing with the GeoGebra construction from Exploration 1, complete the
following steps.

1. Use the polygon tool to make sure4EDF and4BAC are constructed.

2. Hide line segments CA′, BC ′ and AB′ and trisection points A′, B′ and C ′.

3. Construct midpoints on segments BA,AC and CB. Label these midpoints X, Y and Z, re-
spectively.

4. As in Figure 3 below, construct corner triangles4BXE, 4AYD and4CZF , each of which
has a side that is a line segment from a vertex of the inner triangle 4EDF to the closest
midpoint. See https://www.geogebra.org/m/btsubjbp for the construction.

Figure 3. Construct Corner Triangles

5. On each side of the outer triangle, rotate the corner triangle 180 degrees about the midpoint of
that side clockwise. For example, rotate triangle 4BXE about point X clockwise. Hide any
duplicate point names that are created. See https://www.geogebra.org/m/vhjkzxme
for the construction.

6. Hide each corner triangle and the midpoints of the sides of the outer triangle.

7. Use the polygon tool to construct each of the quadrilaterals on the corners and make each a
different color.

8. In each quadrilateral construct a diagonal as a dashed segment with an endpoint outside the
outer triangle. See https://www.geogebra.org/m/v6ypbk7p for the construction.

As in Figure 4, the construction results in seven triangles, the inner triangle, and six triangles in the
quadrilaterals.

Question 2.3

1. Measure the lengths of all three sides of the inner triangle. Do the same for the triangles formed
inside the quadrilaterals.
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Figure 4. Picture Proof Construction

2. What can you conclude about each of the seven triangles? How does this demonstrate your
conjecture from Exploration 1?

3. What types of quadrilaterals have been formed?

See https://www.geogebra.org/m/nudrjufr for the construction. Based on inspecting
side lengths of the triangles during a drag test, these triangles appear to be congruent and thus have
the same area. Because there are seven of them, which together make up the outer triangle, the ratio
of the area of the inner triangle to the outer triangle appears to be 1 to 7. While conducting a drag test,
the opposite side lengths of the quadrilaterals remain the same. As a result, the quadrilaterals appear
to be parallelograms.

Also, see https://www.geogebra.org/m/mpkmuvu4 (Flores, 2019a) for an interactive con-
struction which allows you to control the angle of rotation of the corner triangles up to 180 degrees.
Another interesting picture proof is given by Steinhaus (1999). In this construction, a line segment
is drawn through each of the vertices of the inner triangle, parallel to the opposite side of the inner
triangle. One of the two parts of each of the quadrilaterals is then rotated 180 degrees to form six tri-
angles, each congruent to the inner triangle. See https://www.geogebra.org/m/x5udzcnu
(Flores, 2019b) for an interactive construction which allows rotation of component parts up to 180
degrees.

3 COORDINATE GEOMETRY AND THE ONE-SEVENTH TRIANGLE

In this section, for the case of an equilateral triangle, we will prove the conjecture in the answer to
Question 2.1 as given by Warkentin (1992). We use the coordinate system, formulas from analytic
geometry (such as the distance and slope formulas) and algebra. We will derive a formula which will
confirm the ratio not only when vertices are connected to trisection points but which will also give the
ratio when the vertices are connected to “n-section” points where n ≥ 2.

Without loss of generality, consider an equilateral triangle with sides of length 2a, with a vertex placed
at the origin, and a side along the positive x-axis.
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Figure 5. Equilateral Triangle

In Figure 5 assume that4BAC is equilateral and that

BA′ = (1/n)BA, AC ′ = (1/n)AC and CB′ = (1/n)CB. (2)

Question 3.1

(a). Find the coordinates of A,A′, B′ and C ′.

(b). Find the equations of the lines
←→
AB′,

←→
CA′ and

←−→
BC ′ in slope-intercept form.

(c). Find the coordinates of the intersections E,D and F .

To find the coordinates of A, drop a perpendicular to the midpoint, M = (a, 0), of BC. Then
4MAC is a 30-60-90 triangle with base of length MC = a and height of MA =

√
3a. Thus, we

have A = (a,
√
3a). C ′ is the point (1/n)th of the way from A to C. Thus, we have

C ′ = (1− 1/n)(a,
√
3a) + (1/n)(2a, 0) =

(
na+ a

n
,
na
√
3− a

√
3

n

)
.

Similarly, we have

A′ = (1− 1/n)(0, 0) + (1/n)(a, a
√
3) =

(
a

n
,
a
√
3

n

)
and

B′ = (1− 1/n)(2a, 0) + (1/n)(0, 0) =

(
2an− 2a

n
, 0

)
.

To find the equation of
←→
AB′ first find its slope

m =

√
3a− 0

a− (2an− 2a)/n
=

√
3n

2− n
.
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Then plug the coordinates of either A or B′ into y = mx + b and solve for b. Plugging in the
coordinates of B′ gives

0 =

√
3n

2− n

2an− 2a

n
+ b =⇒ b =

2a
√
3(1− n)

2− n
.

Thus, the equation of
←→
AB′ is

y =

√
3n

2− n
x+

2a
√
3(1− n)

2− n
.

Similarly, solving for the equations of
←→
CA′ and

←−→
BC ′ gives, respectively,

y =

√
3

1− 2n
x− 2a

√
3

1− 2n
and y =

√
3(n− 1)

n+ 1
x. (3)

As E is the intersection of
←→
CA′ and

←−→
BC ′, using (3) and solving for the x-coordinate of E,

√
3

1− 2n
x− 2a

√
3

1− 2n
=

√
3(n− 1)

n+ 1
x =⇒ [(n− 1)(1− 2n)− (n+ 1)]x = −2a(n+ 1)

=⇒ x =
−2a(n+ 1)

(n− 1)(1− 2n)− (n+ 1)
=

a(n+ 1)

n2 − n+ 1
.

Plugging this x-coordinate into the equation of
←−→
BC ′ in (3) gives the y-coordinate of E and we have

E =

(
a(n+ 1)

n2 − n+ 1
,

√
3a(n− 1)

n2 − n+ 1

)
. (4)

Finding the coordinates of D and F in the way that we found the coordinates of E gives

D =

(
a(n− 1)(n+ 1)

n2 − n+ 1
,

√
3a(n− 1)2

n2 − n+ 1

)
and F =

(
a(2n2 − 4n+ 3)

n2 − n+ 1
,

√
3a

n2 − n+ 1

)
. (5)

Question 3.2

(a). Find ED,DF and FE. What can you say about4EDF?

(b). Show
area(4EDF )

area(4BAC)
=

(n− 2)2

n2 − n+ 1
(6)

by using your result from part (a) to relate the area formulas of4BAC and4EDF .

(c). Find
area(4EDF )

area(4BAC)

for n = 3, n = 4 and n = 5.
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Using the distance formula, our assumption that n− 2 > 0, n2 − n + 1 > 0 for all n and (4) and (5)
we have

ED =

√√√√(a(n− 1)(n+ 1)− a(n+ 1)

n2 − n+ 1

)2

+

(
a
√
3(n− 1)2 − a

√
3(n− 1)

n2 − n+ 1

)2

=
a(n− 2)

n2 − n+ 1

√
(n+ 1)2 +

(√
3(n− 1)

)2
=

2a(n− 2)

n2 − n+ 1

√
n2 − n+ 1

=
2a(n− 2)√
n2 − n+ 1

.

(7)

Again, using the distance formula

DF = FE =
2a(n− 2)√
n2 − n+ 1

. (8)

Therefore,4EDF is an equilateral triangle, similar to equilateral triangle4BAC. Letting a1 be the
altitude of4EDF and a2 be altitude of4BAC we then have

a2
a1

=
AB

ED
=⇒ a2 = a1

AB

ED
.

Thus, using (7) we have

area(4EDF )

area(4BAC)
=

(1/2)EDa1
(1/2)ABa2

=
EDa1

AB[a1(AB/ED)]
=

ED2

AB2

=

[
2a(n− 2)/

√
n2 − n+ 1

]2
(2a)2

=
(n− 2)2

n2 − n+ 1
. (9)

A construction demonstrating this formula can be found here https://www.geogebra.org/
m/bduegj56. Computer algebra using GeoGebra CAS to find (4), (5), (7), (8), and (9) can be found
here https://www.geogebra.org/m/qhpceapj.

We have the ratios

(3− 2)2

32 − 3 + 1
=

1

7
for n = 3,

(4− 2)2

42 − 4 + 1
=

4

13
for n = 4, and

(5− 2)2

52 − 5 + 1
=

3

7
for n = 5. (10)

The first equality agrees with the answer we found to Question 2.1. Also, we assumed that n > 2.
But if n = 2 the sides of 4BAC are bisected and BC ′, CA′ and AB′ meet at a single point called
the centroid. This is consistent with our formula as

(2− 2)2

22 − 2 + 1
= 0 (11)

which is the area of4EDF as it collapses to a single point. Thus, our formula holds for n ≥ 2.
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Question 3.3

(a). Show that only for n = 3

area(4EDF )

area(4BAC)
=

(n− 2)2√
n2 − n+ 1

=
1

m
(12)

for some positive integer m, and thus, only for n = 3 is area(4BAC) a positive integer multiple
of area(4EDF ).

(b). Given your answer from part (a), for what values of n is a construction such as in Section 2.3
possible? Why?

(c). What happens as n→∞?

Because every unit fraction, i.e., every fraction of the form 1/m for some positive integer m, is less
than or equal to 1/2 consider

area(4EDF )

area(4BAC)
=

(n− 2)2

n2 − n+ 1
≤ 1

2
⇐⇒ n2 − 7n+ 7 ≤ 0 ⇐⇒ 1.21 ≤ n ≤ 5.79.

where the last inequality comes from solving the corresponding quadratic equation in the previous
inequality and by choosing three test points (or by considering the graph of the corresponding upward
turning parabola).

Therefore, for (12) to hold we must have n = 2, 3, 4, 5. But by (10) and (11), among these values of
n, (12) only holds for n = 3 when m = 7. Thus, constructions such as the one in Section 2.3 are
possible only when using trisection points.

However, similar constructions are possible for other values of n. For example, if n = 4 we know
by (10) the ratio of the area of the inner to the outer triangle is 4 to 13. As in Figure 6 below,
we can then divide the inner triangle into four congruent triangles and split the remaining part
of the outer triangle into nine more triangles, each congruent to the inner four. The construction
can be found here https://www.geogebra.org/m/hq3snkae. This construction was taken
from (Warkentin, 1992) which also includes constructions for the cases when n = 5 and n = 6.
For an interactive construction which allows rotation of the corner triangles up to 180 degrees see
https://www.geogebra.org/m/dfppga4m.

We have

lim
n→∞

(n− 2)2

n2 − n+ 1
= lim

n→∞

n2 − 4n+ 4

n2 − n+ 1
= lim

n→∞

1− 4/n+ 4/n2

1− 1/n+ 1/n2
= 1.

This is consistent with the geometric interpretation of the formula because the inner triangle takes up
more area and tends towards taking up the whole area of the outer triangle as n→∞.

4 EUCLIDEAN GEOMETRY AND THE ONE-SEVENTH TRIANGLE

In this section, we give a proof using Euclidean geometry, without additional mathematical tools im-
plemented in Section 3 or Section 5. This proof relies on the fact that the area of a triangle equals
one-half the length of its base times the length of the altitude and some algebra.

Assume that in Figure 7 we have (1) as in Section 2.1.
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Figure 6. n=4 with 4/13 ratio

Figure 7. Diagram for Euclidean Proof

Question 4.1 We know that the area of any triangle equals one-half the length of its base times the
length of the altitude. Using this fact and (1), what can you say about the relationship between
area(4BAB′) and area(4B′AC) and the relationship between area(4BFB′) and area(4B′FC)?
Use this to show

area(4BAF ) = 2 area(4FAC). (13)

4BAB′ and4B′AC share an altitude, the perpendicular line segment drawn from A to BC. Let a1
be the length of this altitude. Using (1) we have

B′B = CB − CB′ = CB − (1/3)CB = (2/3)CB.

Thus,
area(4BAB′) = (1/2)a1B

′B = a1(1/3)CB = a1(CB′) = 2 area(4B′AC).

Letting a2 be the length of the altitude drawn from F to BC we see that

area(4BFB′) = (1/2)a2B
′B = a2(1/3)CB = a2(CB′) = 2 area(4B′FC).

Solving we then have

area(4BAB′)− area(4BFB′) = 2[area(4B′AC)− area(4B′FC)]

⇒ area(BAF ) = 2 area(FAC).
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Question 4.2 What can you say about the relationship between area(4A′AC) and area(4BA′C)
and the relationship between area(4A′AF ) and area(4BA′F )? Use this to show

area(4FAC) = 2 area(4BFC). (14)

4A′AC and 4BA′C share an altitude and 4A′AF and 4BA′F share an altitude. Thus, using (1)
as in Question 4.1, we see

area(4A′AC) = 2 area(4BA′C) and area(4A′AF ) = 2 area(4BA′F ).

Solving we have,

area(4A′AC)− area(4A′AF ) = 2[area(4BA′C)− area(4BA′F )]

⇒ area(4FAC) = 2 area(4BFC).

Question 4.3 Use (13) and (14) to show

area(4FAC) = (2/7) area(4BAC). (15)

Notice that4BAF,4FAC, and4BFC do not overlap and make up4BAC.

Using (13) and (14) we have

area(4BAC) = area(4BAF ) + area(4FAC) + area(4BFC)

= 2 area(4FAC) + area(4FAC) + (1/2) area(4FAC)

= (7/2)area(4FAC)

which gives (15). Using similar arguments as above we also have

area(4BAD) = (2/7) area(4BAC), and
area(4BEC) = (2/7) area(4BAC).

(16)

Question 4.4 Finally, use (15) and (16) to show that

area(EDF ) = (1/7) area(BAC).

We have

area(4EDF ) = area(4BAC)− [area(4FAC) + area(4BAD) + area(4BEC)]

= area(4BAC)− (6/7) area(4BAC) = (1/7) area(4BAC).

Question 4.5 Use (14) and (15) to prove the ratios conjectured in your answer to Question 2.2.

By (14) and (15) we have

area(4BFC) = (1/2)[(2/7)area(4BAC)] = (1/7)area(4BAC).

Then with CB′ = (1/3)CB, and since4BFC and4B′FC share an altitude,

area(4B′FC) = (1/3)[(1/7)area(4BAC)] = (1/21)area(4BAC).

Using similar arguments as above we also have

area(4DAC ′) = area(4BA′E) = (1/21)area(4BAC).

Thus, using the labels in Figure 2, we have

area(V II) = (2/7)area(4BAC)− (1/21)area(4BAC) = (5/21)area(4BAC).

Similarly, we have
area(V I) = area(V ) = (5/21)area(4BAC).
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5 LINEAR ALGEBRA AND THE ONE-SEVENTH TRIANGLE

In this section, we find the ratio of the area of the inner triangle to the area of the outer triangle using
powerful tools of linear algebra. We first introduce some facts that we will need. We first introduce
facts of linear algebra that we use to solve the problem in the case of a right triangle and then, finding
the correct linear transformation, we solve the problem in general.

5.1 Linear Algebra Facts

1. Let P be a parallelogram which has the vectors (a1, a2) and (b1, b2) as adjacent sides and let

D =

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ = a1b2 − b1a2,

that is, D is the determinant of the matrix with columns (a1, a2)> and (b1, b2)
>. Then we have

area(P ) = |D|.

Thus, for a triangle T which has the vectors (a1, a2) and (b1, b2) as sides

area(T ) = (1/2)|D|.

2. If S is a shape in R2 and L is a linear transformation of R2, then

area[L(S)] = | det(L)| area(S)

where det(L) is the determinant of L.

3. A linear transformation maps line segments to line segments and preserves the ratio of distances
of points on line segments to endpoints.

Discussion and proofs of Facts 1 and 2 can be found in Farin & Hansford (2013) and at Khan
Academy (2019). Fact 3 can be seen by considering, as in Figure 8, the image of line segment p1p2
under linear transformation L,

L[p1 + t(p2 − p1)] = L(p1) + t[L(p2)− L(p1)] for 0 ≤ t ≤ 1.

5.2 Finding the ratio of areas using Linear Algebra

In Figure 9 (a) we have a right triangle with inner triangle4E1D1F1. In Figure 9 (b), assume (1) of
Section 2.1 holds.

Question 5.1 The vector from A1 = (0, 1) to (2
3
, 0) is given by(

2

3
, 0

)
− (0, 1) =

(
2

3
,−1

)
and the vector from (0, 1

3
) to C1 = (1, 0) is given by

(1, 0)−
(
0,

1

3

)
=

(
1,−1

3

)
.

27



North American GeoGebra Journal Volume 8, Number 1, ISSN 2162-3856

Figure 8. Linear Transformation of Line Segment

Figure 9. Linear Transformation of Construction in Right Triangle

Find the coordinates of intersection F1 by solving

(0, 1) + t

(
2

3
,−1

)
=

(
0,

1

3

)
+ s

(
1,−1

3

)
, (17)

for s and t, that is, find “how far”, as given by s and t, respectively, along each of the vectors we
move to land on the intersection.

Equating coordinates in (17) and doing row operations,

(2/3)t− s = 0

t− (1/3)s = 2/3
−→

t− (3/2)s = 0

(7/6)s = 2/3
−→

t = 6/7

s = 4/7.

Thus, we have

F1 = (0, 1) + (6/7)

(
2

3
,−1

)
=

(
4

7
,
1

7

)

Question 5.2 As you did in Question 5.1, find the coordinates of E1 and D1.

To find E1 solve

t

(
1

3
,
2

3

)
=

(
0,

1

3

)
+ s

(
1,−1

3

)
(18)
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Equating coordinates in (17) and doing row operations,

(1/3)t− s = 0

(2/3)t+ (1/3)s = 1/3
−→

t− 3s = 0

(7/3)s = 1/3
−→

t = 3/7

s = 1/7.

Thus, we have

E1 = (3/7)

(
1

3
,
2

3

)
=

(
1

7
,
2

7

)
.

Solving for D1 as we solved E1 and F1 we have

D1 =

(
2

7
,
4

7

)
.

Question 5.3 Using Linear Algebra Fact 1 show

area(4E1D1F1)

area(4B1A1C1)
= 1/7. (19)

Start by finding two vectors, v1 and v2, which form two sides of4E1D1F1.

The vectors from E1 to F1 and E1 to D1 are respectively,

v1 =

(
4

7
,
1

7

)
−
(
1

7
,
2

7

)
=

(
3

7
,−1

7

)
and v2 =

(
2

7
,
4

7

)
−
(
1

7
,
2

7

)
=

(
1

7
,
2

7

)
.

Thus,

area(4E1D1F1) = (1/2)

∣∣∣∣(3

7

)(
2

7

)
−
(
−1

7

)(
1

7

)∣∣∣∣ = 1/14

and as area(4A1B1C1) = 1/2, we have (19).

Question 5.4 Find a linear transformation, L, that maps (1, 0) to C and (0, 1) to A.

L has matrix representation in the standard basis vectors, (0,1) and (1,0), of

M =

(
c a
0 b

)
.

By Linear Algebra Fact 3, all of the elements of construction (a) in Figure 9 are mapped onto to
corresponding elements of construction (b) in Figure 9 by L. For example,

L

[(
1

3
,
2

3

)]
=

(
c a
0 b

)(
1/3
2/3

)
=

(
(1/3)c+ (2/3)a

(2/3)b

)
=

(
c
0

)
+ (2/3)

[(
a
b

)
−
(
c
0

)]
= C + (2/3)(A− C) = C ′.

In particular, we have L(4B1A1C1) = 4BAC and L(4E1D1F1) = 4EDF . Thus, by Linear
Algebra Fact 2 and (19) we have

area(4EDF )

area(4BAC)
=

area[L(4E1D1F1)]

area[L(4B1A1C1)]
=

det(L)[area(4E1D1F1)]

det(L)[area(4B1A1C1)]
= 1/7.

For an interactive construction that maps the right triangle by a linear transformation to 4BAC and
in which you can specify a, b, and c see https://www.geogebra.org/m/egfp2mj6.
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6 FINAL REMARKS

The one-seventh area problem provides an opportunity for instructors to extend a geometric viewpoint
beyond a geometry course as geometric reasoning and visualization complement algebraic thinking in
linear algebra in line with (Zorn et al., 2015) (Content Recommendation 6, p. 12). Instructors can use
the many problems presented in this paper to demonstrate applications of geometric constructions in
GeoGebra, coordinate geometry, Euclidean geometry, and linear algebra and the connections among
all of them.

Section 5.1 can be introduced even to students who have not yet completed linear algebra course
work but can also be used to demonstrate the close connection between geometry and linear algebra
for those who have. Among many questions that naturally arise, a student might try to apply linear
algebra to the formula (6) in Question 3.2 to all triangles by finding the correct linear transformations
and using its properties.

Many generalizations, variations and similar problems as the one-seventh area triangle problem ex-
ist and they can all be considered using the approaches of geometric construction, coordinate and
Euclidean geometry and linear algebra as demonstrated in this paper.
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A APPENDIX: WORKSHEETS

Worksheet 1 - Inner Triangle Construction

1. In GeoGebra, construct a dynamic triangle, 4BAC. Dilate point C about A with factor 1/3
to create C ′. Repeat, dilating point B about C to create B′ and point A about B to create A′.
Points A′, B′, and C ′ are called trisection points. You should have the relationships

BA′ = (1/3)BA, AC ′ = (1/3)AC and CB′ = (1/3)CB. (1)

Join vertex A to the trisection point on the side opposite A. Repeat for vertices B and C. Your
sketch should look something like the one below. Note that triangle 4EDF is formed by the
intersection points of segments AB′, BC ′, and CA′.

Figure 10. Construction of Inner Triangle

2. What relationships, if any, appear to exist between triangles4BAC and4EDF ? Justify your
conjecture with evidence from your sketch. Include screenshots of your work along with written
commentary.

3. Rigorously prove your conjecture using Euclidean geometry by answering the questions below.

Question 1 The area of any triangle equals one-half the length of its base times the length of the
altitude. Using this fact and (1), what can you say about the relationship between area(4BAB′) and
area(4B′AC) and the relationship between area(4BFB′) and area(4B′FC)? Use this to show

area(4BAF ) = 2 area(4FAC). (2)

Question 2 What can you say about the relationship between area(4A′AC) and area(4BA′C) and
the relationship between area(4A′AF ) and area(4BA′F )? Use this to show

area(4FAC) = 2 area(4BFC). (3)

Question 3 Use (2) and (3) to show

area(4FAC) = (2/7) area(4BAC). (4)

Notice that4BAF,4FAC and4BFC do not overlap and make up4BAC.

Question 4 Using similar arguments you used to show (4) you have

area(4BAD) = (2/7) area(4BAC) and area(4BEC) = (2/7) area(4BAC). (5)

Using (4) and (5) determine the relationship between area(4BAC) and area(4EDF ).
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Worksheet 2 - Other Components of the Triangle

1. In your sketch from Worksheet 1 there are three distinct quadrilaterals which share a side with
inner triangle4DEF . Modify this sketch, constructing these quadrilaterals as polygons. Your
sketch should also include three distinct “corner” triangles that share a vertex with the inner
triangle. Modify your GeoGebra sketch, constructing these “corner” triangles as polygons. In
the figure below, the “corner” triangles are labeled as II, III, and IV and the quadrilaterals are
labeled as V, VI, and VII.

Figure 11. Other Components of Triangle

2. Calculate the ratio of the area of each of the “corner” triangles II, III and IV to the area of outer
triangle,4BAC. What do you notice? Justify your conjecture with evidence from your sketch.
Include screenshots of your work along with written commentary.

3. Calculate the ratio of the area of each of the quadrilaterals, V, VI, and VII, to the area of outer
triangle,4BAC. What do you notice? Justify your conjecture with evidence from your sketch.
Include screenshots of your work along with written commentary.

4. Rigorously prove your conjecture using Euclidean geometry by answering the questions below.

Question 1 In Worksheet 1, you established the following relationships

area(4BAF ) = 2 area(4FAC) and area(4FAC) = (2/7) area(4BAC).

Use these relationships and CB′ = (1/3)CB to prove your conjecture about the ratio of the area of
triangle IV to the area of 4BAC? Can you make similar arguments about areas of triangles II and
III?

Question 2 Use your answer to the previous question to prove your conjecture about the ratio of the
areas of V, VI, and VII to the area of4BAC.
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B APPENDIX: RELATED PROBLEM

A similar construction technique as seen in the picture proof of Section 2.3 can be used to make a
conjecture about the ratio of the area of an inner parallelogram to the area of an outer parallelogram.
Construct a parallelogram with midpoints on each side. Then, construct segments from the vertices
of the parallelogram to the midpoints so the segments from opposite vertices do not intersect. The
intersection points of these segments are the vertices of the inner parallelogram. Use the technique
of rotating and dividing pieces of the outer parallelogram to create four quadrilaterals as shown in
Figure 12.

Figure 12. Parallelogram Construction

Question 1 What conjecture can you make based on this construction? Measure areas and use the
“drag test” as in Section 2.1 to confirm your conjecture. If instead of choosing midpoints you choose
trisection points then what is the ratio of the outer to the inner parallelogram?

The completed construction is here https://www.geogebra.org/m/mqfhd5qs. Upon in-
spection, there are four congruent parallelograms formed, each congruent to the inner parallelo-
gram. Thus, the ratio of the area of the inner parallelogram to the area of the outer parallelogram
is 1 to 5. Measuring areas and using the drag test gives a result that agrees with this. For an in-
teractive construction which allows rotation of the corner triangles up to 180 degrees see https:
//www.geogebra.org/m/zvfm6fhg. If the construction uses trisection points, instead of mid-
points, then the ratio of the area of the inner parallelogram to the area of the outer parallelogram is 1
to 13.

34

https://www.geogebra.org/m/mqfhd5qs
https://www.geogebra.org/m/zvfm6fhg
https://www.geogebra.org/m/zvfm6fhg

	Introduction
	Using GeoGebra to explore the one-seventh triangle
	Exploration 1: Inner Triangle Construction
	Exploration 2: Other Components of Inner Triangle Construction
	Exploration 3: Picture Proof of Ratio of Areas

	Coordinate Geometry and the one-seventh triangle
	Euclidean Geometry and the one-seventh triangle
	Linear Algebra and the one-seventh triangle
	Linear Algebra Facts
	Finding the ratio of areas using Linear Algebra

	Final Remarks
	Appendix: Worksheets
	Appendix: Related Problem

