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Abstract

Using GeoGebra, we present an innovative method for teaching of the intersection of polyhedrons
with a plane using infinite points and the swap of finite and infinite points. The method presented
is efficient and powerful, allowing one to generate solutions of a whole set of problems by solving
one instance and using a pre-made applet at any stage of the solution process.

Keywords: Dynamic geometry software; GeoGebra; Infinite point; Intersection of a plane and a
polyhedron.

1 INTRODUCTION

The concept of mathematical competence now includes facility with modern software systems. Us-
ing dynamic geometry software (DGS) such as GeoGebra, students develop programming skills and
algorithmic thinking, expanding their digital competence beyond that of traditionally passive tech-
nologies. Use of interactive software also deepens students’ mathematical knowledge and conceptual
understanding of mathematics [1, 2, 6, 12, 17, 22].

1.1 Sam software

In Bulgaria, preservice teachers use a specialized dynamic software, Sam, in their preparation to work
with young students [7, 8, 21] and to deepen understanding of topics associated with the teaching of
mathematics. A new function, Swap finite and infinite points, is included in the geometry menu of
Sam which greatly simplifies sketch work while supporting creative problem solving in the teaching
and learning of geometry. The tool challenges teachers and students to discover new connections
between the geometric objects, to summarize certain tasks (both elementary and from international
competitions), and to create new tasks [8,16,19]. Research involving the usage of Sam in the teaching
of geometry across various grades [14,15,21], cultures [5], and abilities show that the tool encourages
increased student interest and motivation in mathematics.

1.2 GeoGebra

While Sam is a specialized DGS, GeoGebra is a universal, freely-available DGS with a large library of
functions. A particularly useful feature of GeoGebra is the software’s capacity to preserve attributes
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of objects and save a sequence of construction steps using scripting tools. The rich possibilities of
GeoGebra can be combined with the function Swap finite and infinite points, using checkboxes [18].
This idea is has been explored with students from fifth grade in [14].

Coxeter notes that two lines intersect at an infinite point if they are parallel ( [3], p. 98). This notion is
based on an idea originally developed by Kepler. Specifically, an infinite point U∞ is associated with
every set of parallel lines, indicating the direction of the lines. For this reason, it is helpful to present
an infinite point with a vector in GeoGebra.

In the following discussion, we present the notion of infinite points with the help of GeoGebra in
the context of an exploration of the intersection of polyhedra with a plane. Our method fosters cre-
ativity while helping make student and teacher sketchwork more efficient. Specifically, we consider
three basic tasks and their solutions and with a pre-fabricated applet, demonstrating the possibil-
ity of generating new tasks. All figures in the paper can be downloaded from: http://fmi-
plovdiv.org/GetResource?id=2068.

2 PRELIMINARIES

The function Swap finite and infinite points, defined in DGS Sam [8], allows the visualization of the
wide variety of quadrangular and triangular prisms, pyramids, and truncated pyramids with a single
button click [8, 20, 21]. The construction of a universal parallelepiped highlights the functionality of
Swap finite and infinite points. This construction is completely described in [8]. For completeness
sake, we describe it here again.

2.1 Universal Parallelepiped

A sketch of a completed universal parallelepiped is shown in (refer to Figure 1). The free objects in
its construction are the points A, U, V, W, U∞, V∞, W∞. After constructing these points, we
define two Boolean variables, a and b with labels “Swap U and U∞” and “Swap V and V∞”,
respectively. Then we construct the two lines:

c=If[a,Line[A,U],Line[A,U∞]] and d=If[b,Line[A,V],Line[A,V∞]].

Figure 1. Universal Parallelepiped

If the checkbox “Swap U and U∞” is not checked, Line[A,U∞] is visible, otherwise Line[A,U]
is shown. The same holds for the other checkbox with Boolean variable b. With the commands
B=Point[c] and D=Point[d] we choose arbitrary points B and D on lines c and d, respectively.
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Next, we define the lines e=If[b,Line[B,V],Line[B,V∞]] and
f=If[a,Line[D,U],Line[D,U∞]]. The vertex C is the intersection point of the lines e and
f and is defined by C=Intersect[e,f]. Next, the edges of the parallelepiped are constructed
as segments. The figure ABCD is constructed in this way. We consider it as a lower base of the
parallelepiped ABCDA’B’C’D’, and we call it universal parallelogram [8]. Next, we add the third
Boolean variable i with labels “Swap W and W∞” to construct the surrounding edges of the prism,
which lay on the lines

• h=If[i,Line[A,W],Line[A,W∞]],

• g=If[i,Line[B,W],Line[B,W∞]],

• j=If[i,Line[C,W],Line[C,W∞]] and

• k=If[i,Line[D,W],Line[D,W∞]].

The choice of the point A’ on the line h defines the length of the surrounding edges. The edges of the
upper base A’B’C’D’ and the remaining vertices are constructed with the help of the tools parallel
line and intersection of two lines.

The above described construction of the universal parallelepiped creates an obligated status of its
faces ABCD and A’B’C’D’ to be its bases. The rotation of the infinite points U∞ and V∞ changes
the angle of the parallelogram and the rotation of W∞ transforms the parallelepiped from sloping to a
right-angled parallelepiped. The limited freedom of the points B ∈ AU∞, D ∈ AV∞ and A′ ∈ AW∞
allows us to change the length of the edges of the parallelepiped.

2.2 Connected Figures

We refer to figures that are obtained from one another with the help of the function Swap finite and
infinite points as connected figures [8]. For example the Figures 1, 2a, and 2b are connected.
A truncated pyramid with base ABCD is obtained from the universal parallelepiped by swapping V∞
and V; W∞ and W (refer to Figure 2a). A triangular pyramid is obtained from the universal paral-
lelepiped by swapping U and U∞ as well as W and W∞, positioning the point B (and C) to coincide
with U and positioning the points A’, (B’, C’ and D’) to coincide with W.

Remark 1 A new sketch is displayed after clicking the checkbox “Swap V and V∞.” One may
need to move the point D to carry out the relation D/AV (point D is between the points A and V).
After clicking the checkbox “Swap W and W∞” one may need to move the point A’ to carry out
the relation A’/AW (refer to Figure 2a). After clicking the checkbox “Swap U and U∞” one may
need to move the point B to carry out the relation B/AU.

2.3 Basic Constructions for finding the intersection of polyhedrons with a plane

For sake of clarity, we will denote the plane of the intersection by α.The basic constructions used to
find the intersection of α and a polyhedron are:

1. Finding the piercing point G of a line g, generated by two vertices of the polyhedron and the
plane α. To find the point G=g∩α we perform the following constructions:

(a) Construct an auxiliary plane β, which is incident with the line g;
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(a) Truncated Pyramid (b) Triangular Pyramid

Figure 2. Main figure caption

(a) Construction A (b) Construction C

Figure 3. Main figure caption

(b) Construct the line s=α ∩ β;

(c) Locate the point G=g∩s=g∩α (refer to Figure 3a).

2. Locate the intersection line s of the plane α with the plane γ, containing a face of the polyhe-
dron. To find s it is enough to locate two common points P and Q for the planes α and γ. Then
the intersection line is s=α ∩ γ=PQ.

3. Finding the piercing points of the edges of the polyhedron, located in one of the faces with α,
is simplified because these edges have a common auxiliary plane β = γ – the plane of the face
(refer to Figure 3b). Then the intersection points of the line s with all the lines incident with
the edges that belong to the face γ, are the piercing points of these lines with α. From Figure
3b, we see that the edges BC and AD have common points H and I with α, respectively, while
there will be no vertices from the polygon, the intersection of the polyhedron with α, that lay
on edges AB and CD.

3 INTERSECTION OF POLYHEDRONS WITH A PLANE

As one might imagine, intersections of polyhedra with planes is one of the most difficult concepts for
Bulgarian school students to grasp. For this reason, the concept is not included in the course of study
of all secondary schools. In addition, different presentations of the topic appear in various textbooks
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in Bulgaria [4, 9–11, 13].

In the paragraphs that follow, we present a new strategy for the construction of intersections of poly-
hedra with planes with GeoGebra and the help of a teacher-constructed applet, namely Swap finite
and infinite points. This approach introduces a creative component in the study of the concept. Our
approach is based on the projective property – a preservation of the incidence of the basic objects
(points, lines and planes) in the central projection. We avoid using the affine property that the parallel
faces of the parallelepiped intersect the plane of the section in parallel lines because after the tran-
sition into prisms with bases different from parallelograms or into pyramids (truncated or not), this
property is not preserved (except for the bases).

Finding the lines of intersection of the planes of two faces of the polyhedron with α ensures the avail-
ability of two common intersection points. Thereafter we can determine all the piercing points of the
edges of the polyhedron with α. Without loss of generality, we choose one of the first intersection
lines to lie on a base of the polyhedron.

Let the plane of the intersection α be determined by the non-collinear points P, Q, R. We use the
notations (A1A2 . . . An) for the face A1A2 . . .An of the polyhedron and γ(A1 A2 . . . An) for the
plane of this face. We introduce our method for determining the intersection of a polyhedron and a
plane with the following classical problem:

Problem 1 Find the intersection of the parallelepiped ABCDA’B’C’D’ with the plane α(P,Q,R),
where P∈BC, Q∈AA’, R∈C’D’.

Solution: Initially, we find the intersection line s of the plane α and the plane γ(ABCD) (refer to
Figure 4). Since we have one point P belonging to s, it will suffice to find the piercing point F of the
line RQ with the plane γ(ABCD). We consider the auxiliary plane β(Q,R,W∞).

Figure 4. Problem 1

To find the intersection line t=β ∩ γ, we determine two points incident with R1=RW∞ ∩ γ=RW∞ ∩CD
and Q1=QW∞ ∩ γ=A. They are the projections of R and Q on the plane γ(ABCD) along W∞. This step
is often referred to as method of projections. Consequently there holds the relation F=RQ∩ γ=RQ∩t=RQ∩R1Q1

and s=α ∩ γ=PF. From C), the points G=AB∩s, I=AD∩s and H=CD∩s are the piercing points of
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the lines AB, AD and CD with α, respectively. With the help of the lines IQ=α ∩ δ(ADD’A’) and
HR=α ∩ ε(CDD’C’), we determine the vertices of the intersection J=IQ∩A’D’ and L=HR∩CC’.

We will illustrate how, with the applet Swap finite and infinite points, we can generate a set of new
problems with their solutions in GeoGebra. Specifically, we will swap the points P and P∞. For the
correct functioning of the above construction it is necessary for the point P to be swapped with an
arbitrary infinite point P∞, which is incident with the plane γ(ABCD). The position of the point P∞
can be changed in GeoGebra’s Object Properties window. To illustrate this, we will present several
intersections generated from Figure 4 by changing the point P∞. When the points Q and R are not
fixed, for each new drawing we adjust the type of polygon depending on our preference and manually
outline it. If P∞ ∈ BC, then the plane α is parallel to the line BC (refer to Figure 5). If P∞ ∈ BD,
then the plane α is parallel to the line BD (refer to Figure 6); If P∞ ∈ AC, the plane α is parallel to the
line AC (refer to Figure 7). Besides, we have swapped U with U∞ and W with W∞ in Figure 7 and thus
we have produced an intersection of α with a truncated pyramid with bases, which are trapeziums.

Figure 5. P∞ ∈ BC Figure 6. P∞ ∈ BD

Figure 7. P∞ ∈ AC

The figures in Figures 6, 7, 8 and 9 are connected. Using GeoGebra, teachers and their students can
generate a basic problem of their own and produce a set of new problems with their solutions. The
construction of the solutions can be presented step by step with the help of a slider. For example let
us consider the following problem.

Problem 2 Find the intersection of the parallelepiped ABCDA’B’C’D’ with the plane α(P,Q,R)
provided that two of the points P, Q, R lay on the plane of one and the same face of the parallelepiped
ABCDA’B’C’D’ and the third point is arbitrary.

Solution: Without loss of generality, we assume that the points P,Q∈ γ(ABCD) and R are arbitrary
(refer to Figure 8). Although R is an arbitrary point, we need to determine its position in the space
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because the universal parallelepiped ABCDA’B’C’D’ can be considered a main axonometric image
of an arbitrary parallelepiped in general axonometric view, where the three groups of parallel lines
are parallel to the virtual axonometric axes. Note that the projections of the vertices A and A’ on the
plane γ(ABCD) along W∞ are A1=A1’=A, on the plane δ(ADD’A’) along V∞ are A2=D, A2’=D’.
The projections of the other vertices are readily seen. For this reason, denote it by R1, the projection
of R on the plane γ(ABCD) along W∞. We see that s=PQ=α ∩ γ.

Figure 8. Problem 2

According to Remark 1 the points K=s∩AB, T=s∩AD, M=s∩BC and N=s∩CD are the piercing
points of α with the lines AB, AD, BC and CD, respectively. Each of these points belong to the plane
γ(ABCD) and to the plane of one more of the faces of the parallelepiped.

Now we find the intersection line of α with the plane of another face of the parallelepiped. Without
loss of generality, we may search for the intersection line with the plane δ(ADD’A’). We need a
second point from this line, because already T∈AD is a point incident with it. It is enough to find the
piercing point of the line PR (or the line QR) with the plane δ. For this purpose we use the auxiliary
plane λ(P,R,U∞). Projecting the points P and R on the plane δ(ADD’A’) along U∞ yields pro-
jections P3=AD∩PU∞ and R3=RU∞ ∩FW∞, where F=R1U∞ ∩AD. Consequently δ ∩ λ=P3R3 and
the point E=PR∩P3R3 is the piercing point of the line PR with the plane δ(ADD’A’). Then the line
r=TE is the intersection line of α with the plane δ(ADD’A’).

According toC from Section 2, we determine the piercing points H=r∩AA’, G=r∩DD’, I=r∩A’D’.
We construct the line NG, which is the intersection line of the plane α with the plane ε(CDD’C’) and
we find the piercing points L=CC’∩α=CC’∩NG, J=C’D’∩NG. We construct the line ML, which
is the intersection line of the plane α with the plane ρ(BCC’B’) and thus find the piercing points
X=BB’∩α=BB’∩ML and Z=B’C’∩α=B’C’∩ML. Note the piercing point S=A’B’∩α=d1 ∩A’B’,
where d1=HK. There hold the relations TK‖JZ, TG‖XZ, GJ‖KX, because there hold γ(ABCD)‖
µ(A’B’C’D’), δ(ADD’A’)‖ ρ(BCC’B’),
ε(CDD’C’)‖ σ(ABB’A’), respectively.

Definition 2 Following [8] we will accept the definition of satellite problems as follows: Problems,
which are generated from a problem A with the help of the applet “Swap finite and infinite points”
will be called satellites of Problem A and are denoted by A.1, A.2,. . . etc.
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The applet Swap finite and infinite points in GeoGebra allows teachers and students to produce a set
of satellites of Problem 2 with their solutions. We will illustrate some of these possibilities, and we
will comment the creative stages of their realization.

Problem 2.1 Find the intersection of a truncated pyramid ABCDA’B’C’D’ with parallelogram
bases and surrounding edge AA’ orthogonal to the bases with the plane α(P,Q,R), where P,Q∈
γ(ABCD) and R∈ ρ(BCC’B’).

Solution: It is enough to change the definition of the point R1 from Point[i1] to Intersect[i1,e],
where i1=RW∞ and e=BV∞ in the window “Object properties” (refer to Figure 9). This ensures that
R∈ ρ(BCB’C’). With the help of the checkbox “Swap W and W∞,” we change the Boolean value of
i from false to true. After applying the dynamics on the point A’, we realize the relation A’/AW.

The truncated pyramid, with its intersection with the plane α, is displayed within the sketch. By using
dynamics of the point W, we provide the condition AA’⊥AB, which means AA’⊥ γ(ABCD) in the
parameters of the cabinet projection (usually used in the secondary school).

Problem 2.2 Find the intersection of the oblique prism ABCDA’B’C’D’with trapezum bases (AB ‖CD)
with the plane α(P,Q,R), where the points P and Q are the midpoints of the segments BC and AB,
respectively, and R is the intersection point of the diagonals AC’ and BD’.

Solution: It is enough to change in the window “Object properties” the definitions of the points:
R=Intersect[q1,b2], where q1=BD’, b2=AC’, P=Midpoint[B,C] and Q=Midpoint[A,B]
(refer to Figure 10). Using the checkbox “Swap V and V∞,” we change the Boolean value of b
from false to true, and thus the lines BC and AD transform from parallel lines to intersecting into
the finite point V. After rotation of W∞, we determine the direction of the surrounding edges of the
prism.

Figure 9. Problem Figure 10. Problem

Remark 3 The conditions R ∈BD’ and R3 ∈ AD’ are equivalent because the projection of the line
BD’ on the plane δ(ADD’A’) along the point U is the line AD’ and also the central projecting
(regardless from a final or an infinite center) preserves the incidence.

The last Remark simplifies the solutions of the following two satellite problems.

Problem 2.3 Find the intersection of a truncated quadrangular pyramid ABCDA’B’C’D’ with a
plane α, which passes through the midpoints of the edges AB and BC and α is parallel to the diagonal
BD’.
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Solution: We use the dynamic sketch Figure 10, but now P=Midpoint[A,B], Q=Midpoint[B,C]
(refer to Figure 11). With the help of the checkboxes “Swap U and U∞” and “Swap W and
W∞,” we transform the trapezium ABCD into an arbitrary quadrangular and the parallelepiped into a
truncated pyramid. We define a new Boolean variable o with label “Swap R and R∞,” with R∞ ∈
BD’. According to Remark 3, points R3 (R∞)3 belong to AD’ and E=P3(R∞)3 ∩PR∞=AD’∩PR∞.

After these modifications to the sketch, we draw the segment SG to emphasize the presence of the
relation SG ‖BD’ following from α ‖BD’ and SG=α ∩ π(BDD’B’).

Figure 11. Problem 2.3 Figure 12. Problem 2.4

Problem 2.4 Find the intersection of a quadrangular pyramid ABCDWwith a plane α passing through
the midpoints of the edges AB and BC with α parallel to the surrounding edge WB.

Solution: The solution is generated as suggested in Figure 11 by moving the point A’ to coincide
with W (refer to Figure 12).

Problem 2.5 Find the intersection of a parallelepiped ABCDA’B’C’D’ with a plane α(P,Q,R),
where the point P coincides with a vertex of a base, Q lays in the plane, γ(ABCD) and R is an
arbitrary point. Consider the following cases:

1. The plane α is parallel to a diagonal of the base, and

(a) ABCDA’B’C’D’ is a prism with base an arbitrary quadrangle;

(b) ABCDA’B’C’D’ is a pyramid;

2. The point R lays on a diagonal that connects two vertices which are not from the same face of
the parallelepiped ABCDA’B’C’D’.

Solution: We use the sketch of the Problem 2 (refer to Figure 8). We chose the point P to co-
incide with the vertex B. Thus the definition of the point P must be changed from a free point to
Intersect[c,e], where c=AU∞ and e=BV∞.

a) From the choice of the point P it follows that it is possible to consider α to be parallel to the diagonal
AC. Therefore, the lines AC and PQ will be parallel, i.e., Q∞ ∈ AC. We define a new Boolean variable
o with label “Swap Q and Q∞” (refer to Figure 13).
a1) It is enough to change the Boolean values of a and b to true and the values of i, o to false
to generate the solution (refer to Figure 14).
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Figure 13. Problem 2.5 a

Figure 14. Problem 2.5 (a1) Figure 15. Problem 2.5 (a2)

a2) We set the value false for a, b, o and true for i to generate Figure 15. We draw the
segment HL to emphasize that HL ‖AC.
b) The requirement R to be incident with a diagonal which is not lying in a face of the parallelepiped
generates two cases:
b1) R∈BD’. We define the points R and R1 by R=Point[q1] and R1=Intersect[i1,g2], respec-
tively, where q1=BD’, i1=RW, and g2=BD (refer to Figure 16). Let ABCDA’B’C’D’ be a truncated
pyramid. In this case, the intersection is always a quadrangle with vertex D’=PR∩µ(A’B’C’D’)=E=G.

Figure 16. Problem 2.5 (b1) Figure 17. Problem 2.5 (b2)

b2) R∈AC’. We define points R and R1 by R=Point[q2], and R1=Intersect[i1,f2], respec-
tively, where q2=AC’, i1=RW, and f2=AC (refer to Figure 17). Let ABCDA’B’C’D’ be a paral-
lelepiped. The intersection could be either pentagon or parallelogram, and the point G is not neces-
sarily coincident with D’.
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Remark 4 We have not included the infinite line in the problems, as it was done in [5], and because
the investigation is intended mainly for teachers and students in the secondary schools. This reduces
the number of different problems that can be generated from one basic problem.

In the solutions of the above proposed problems, the preference for the first intersection was for
the plane of the lower base of the parallelepiped. While in Problem 1 both bases had equivalent
conditions to be selected, in Problem 2 this selection was recommended. The solution of the next
problem illustrates the upper base of the parallelepiped as our choice.

Problem 3 Find the intersection of the parallelepiped ABCDA’B’C’D’ with the plane α passing
through the point P , belonging to the plane σ(ABB’A’) through the point R belonging to the plane
δ(ADD’A’) with α parallel to the line BD.

Solution: (refer to Figure 18) First we find the intersection s of α with the plane µ(A’B’C’D’),
creating a structure that will allow us to generate decisions and a set of other tasks. For this purpose
we find the pierce G of line PR with the plane µ(A’B’C’D’), namely, G=PR∩P4R4, where P4

and R4 are the projections of P and R, respectively, along W∞ on the plane µ(A’B’C’D’). Choose an
arbitrary point Q on the plane µ and set point Q∞ ∈B’D’(BD). We create Boolean value with label
“Swap Q and Q∞”, recording the conditional operator: If[v,Line[G,Q],Line[G,Q∞]].

Figure 18. Problem 3

Let us construct the line s=GQ=α ∩ µ. By the checkbox “Swap Q and Q∞,” we set the Boolean
value to false and the line s=GQ is replaced with the line s=GQ∞. The following steps are similar
to Problem 2 and shown in Figure 18. We define the points E=s∩C’D’, F=s∩B’C’, I=s∩A’B’,
and H=s∩A’D’ and then the lines RH=α ∩ δ(ADD’A’) and PI=α ∩ σ(ABB’A’). The points
M=PI∩BB’, N=PI∩AB, J=PI∩AA’, K=RH∩DD’, L=RH∩AD; S=MF∩CC’, T=MF∩BC, X=KE∩CD,
E, F, I, and H are potential vertices of the polygon – section of the plane α with the polyhedron.

We suggest the following four satellite problems:

Problem 3.1 Find the intersection of the truncated quadrangular pyramid ABCDA’B’C’D’ with
parallelogram bases with the plane α passing through the point P belonging to the plane σ(ABB’A’)
through the point R belonging to the plane δ(ADD’A’) with α parallel to the line BD.

Problem 3.2 Find the intersection of the truncated quadrangular pyramid ABCDA’B’C’D’ with
trapezoid bases (AD ‖BC) with the plane α passing through the point P belonging to the plane
σ(ABB’A’) through the point A with α parallel to the line BD.
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Figure 19. Problem 3.1 Figure 20. Problem 3.2

Figure 21. Problem 3.3 Figure 22. Problem 3.4

Problem 3.3 Find the intersection of the pyramid ABCDA’B’C’D’ with trapezoid base (AB ‖CD)
with the plane α passing through the point P belonging to the plane σ(ABB’A’) through the point
R belonging to the plane δ(ADD’A’) with α parallel to the line BD.

Problem 3.4 Find the intersection of the quadrangular prism ABCDA’B’C’D’ with trapezoid bases
(AB ‖CD) with the plane α passing through the point P belonging to the plane ρ(BCC’B’) through
the point R belonging to the plane δ(ADD’A’) with α parallel to the bisector of the angle ∠ABC.

4 CONCLUSION

The exploration of heuristic moments with DGS enhances teaching of school geometry. Building on
this idea, we have advanced an innovative method for studying the topic of intersections of polyhedra
with a plane within the dynamic environment of GeoGebra. We have shown how the teachers and stu-
dents can, though the generation of a basic problem of their own construction, produce a set of new
problems with solutions using the teacher-generated applet Swap finite and infinite points. The func-
tion Swap finite and infinite points adds powerful functionality to GeoGebra for teachers, students,
and researchers, alike.
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